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Abstract: An adaptive waveform is optimized in order to maximize the information returned from the targets,
then the targets informaion is approximated by using a particle filter. This study propose a method to due with
the uncertainties due to the dynamics of the targets, e.g., when the number of moving targets is unknown and
changing over time. Thus, A decay constant is added to the estimated prior target information before optimizing
the waveform by minimizing Cramér-Rao Lower Bound. Jeffreys prior is used to weight the parameters of each
targets. Furthermore, the dynamic state space of the targets is estimated by a particle filter. Finally, the simulation
results demonstrate the capability of the system to track targets.

Key–Words: cognitive system, adaptive waveform, particles filter

1 Introduction
Adding the ability to adapt the waveform according to
environment by using a cognitive scheme is the key
of a smart radar system. This technology overtook
the traditional radar system in many applications. The
accuracy is improved by optimizing a waveform to
minimizes the probability of error called theoretical
bound. Nevertheless, when the number of parameters
are changing, the traditional beam-forming radar sys-
tem might fail to discover a new target. This study
proposed a robust solution to due with the dynamical
change of state space.

In [1], the method to generate a beam pattern for
the MIMO system was proposed, and it was shown
that to improve the estimation accuracy, the power is
focused to the targets location. The waveform opti-
mization to minimize the Cramér-Rao Bound (CRB)
for the MIMO radar was proposed in [2, 3] for sin-
gle target and multiple targets, respectively. Based on
the information theoretic approach, maximizing mu-
tual information between the target impulse response
and the environment also increases the performance,
described in [4].

For a cognitive radar [5], N. A. Goodman et al.
proposed sequential hypothesis testing for active sen-
sors in target recognition, and it is shown that the
waveform based on eigen solution outperformed the
waveform based on the water-filling-based approach.
For the adaptive method, W. Huleihel et al. [6], pro-
posed technique to determine the transmitted wave-

form by minimizing the Cramér-Rao bound (CRB)
and Reuven-Messer bound (RMB) from prior infor-
mation which were derived. This achieved higher es-
timation accuracy than the other existing signal trans-
mission methods.

The measurement of a state vector for multivari-
ate data and non-linear/non-Gaussian process was de-
scribed in [7]. Since a dynamic state vector can be
estimated by using a Bayesian approach, the poste-
rior probability density function (pdf) was constructed
from collected data. The recursive filtering approach
simultaneously estimates the state vector which con-
sists of two steps: predicting the next stage pdf by
using a system model and updating the posterior
pdf by using the Bayes theorem. If every poste-
rior pdf is Gaussian, there are optimum algorithms
called Kalman filter [8] and extended Kalman filter
[9] for linear and non-linear system models, respec-
tively. For non-linear/non-Gaussian, sub-optimum al-
gorithm based on Importance Sampling (IS) [10] was
used. In [11], a number of different particle filters
were described.

The idea of cognitive is the system that operat-
ing in a feedback loop, S. Haykin [12]. After trans-
mit a signal, receivers pick up the reflected signal
combining with prior information about the environ-
ment to model the environmental parameter and uses
a Bayesian filter to track a target. In this step, memory
is used to store and to read the prior knowledge of a
target. Then, the transmitter uses the modeled envi-
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ronment and the state of the target to design a trans-
mitted waveform signal.

Multiple Input Multiple Output (MIMO) radar
is a system that has multiple receivers and multiple
transmitters which emit an independent waveform.
The receivers can know where the signal come from
the received signal of all receivers. The advantage of
MIMO over single-input multi-output (SIMO) system
is the better parameter identifiability [13]. Increasing
parameter identifiability offers more degree of free-
dom, lower power side-lobe at the antennas, and a va-
riety of the transmitted waveform. We consider on
the coherent system where the antennas is closely lo-
cated. The advantage of this is beamforming, power
can be focused to the target location. Therefore, it can
be operated in the lower signal-to-noise ratio (SNR)
environment.

In this study, we consider a cognitive MIMO
waveform optimization and a target’s state space es-
timation in the general case of multiple targets. The
main problem of this study is when the uncertainties
due to the dynamics of the targets occur in the sys-
tem, e.g. when the number of targets is changing by
time, or when the targets are suddenly moving. Ev-
ery existing methods are unstable with this uncertain-
ties. First, the waveform is designed by minimizing
the mean-square-error (MSE) of the estimated param-
eters or CRB with the degeneration of the prior infor-
mation. Second, during the waveform optimization,
Jeffreys prior is included as the weights for each tar-
get parameter which represents the probability of ex-
istence. To estimate the state of the targets, we include
a particle filter into the system. This is a Bayesian ap-
proach to estimate the posterior probability density of
target’s parameters. Furthermore, the number of tar-
gets is also described by a probability density func-
tion.

2 Cognitive MIMO System

The transmission equation of a MIMO system with
NT transmitter andNR receiver is described by Equa-
tion (1). Each pulse step is denoted by k. The sim-
plified matrix form can be written in Equation (2).
H is the system transfer function that is assumed to
be known. The vector (θ) contains the properties de-
scribed targets, such as a complex attenuation, angle
of arrival, Doppler shift or propagation delay. The
noise of the system (n) is assumed to be the multivari-
ate normal distribution with zero mean and covariance
RN .

xk,l = Hk(θ)sk,l + nk,l (1)

where

xk,l is received signal at time index l (xl ∈ CNR)
Hk(θ) is system transfer function (H(θ) ∈ CNR×NT )
θ is targets parameter vector (θ ∈ C5M )
M is the number of targets
sk,l is transmitted signal with code length L at time index l (sl ∈ CNT )
nk,l is interference (nl ∈ CNR)

Xk = Hk(θ)Sk +Nk (2)

where X : is [x1, ..., xl]
S : is [s1, ..., sl]
N : is [n1, ..., nl]

Equation (1) also can be described in Equation (3)
[13], whereas the target parameter (θ) consists of five
parameters: complex attenuation (α), azimuth angle
(ϕaz), polar angle (ϕpo), propagation delay (τ ), and
Doppler shift (D).

xk,l = ΣM
m=1αme

−jωDmtaRxaTTxsk,l(t− τm) + nk,l
(3)

where aR : is [e−jωk·r1 , ..., e−jωk·rNR ]T

aT : is [e−jωk·r1 , ..., e−jωk·rNT ]T

k : is (sinϕaz cosϕpo, sinϕaz sinϕpo, cosϕaz)
r : is position of the antenna.
ω : is carrier frequency.

A transmit signal (S) can be generated from
its covariance matrix (RS) by giving S =
UN (0, I)NT×L, where U is an upper triangular ma-
trix from Cholesky factorization [14] of RS which is
the square root of RS . The generated waveform S is
independent of each transmitter, therefore the rank of
S is equal to the number of transmitters NTx.

The process flow of cognitive MIMO radar is
shown in Figure 1. This is operated in a feed back loop
with a waveform optimizer, parameter estimator, and
memory. The waveform optimizer finds the waveform
that minimize a statistical performance bound, the es-
timator usually use a likelihood estimator to estimate
a target location, and all prior information is memo-
rized into the system along the time. We can achieve
the highest ability of the MIMO system in terms of pa-
rameter identifiability and waveform design by using
this cognitive scheme.

3 Waveform Optimization

In this section, the input covariance RS is optimized
from the prior. In the presence of uncertainties due to
the dynamics of the targets, the theoretical limited is
derived, and find the optimum.
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Figure 1: Cognitive Scheme.

3.1 Fisher Information Calculation

Fisher information indicates the amount of informa-
tion of a parameter. The system finds the waveform
that expected to achieve the highest Fisher informa-
tion.

The MSE of θ is shown in Equation (4). For any
unbiased estimator, the MSE always dose not drop be-
low the inverse of its Fisher information [?].

MSEk = EXk,θ[(θ̂ − θ)(θ̂ − θ)
T ] (4)

MSEk ≥ J−1k (5)

By using the law of total expectation, (shown in
Equation (6)), the conditional MSE given the history
output Xk−1 is the mean square of the difference be-
tween real and estimated parameters when Xk−1 is
known. θ̂ denotes the measurement of θ. Where the
random variable θ is a function of Xk, θ|Xk−1. Equa-
tion (7) shows that the conditional MSE is still greater
than the inverse of conditional Bayesian Fisher infor-
mation (BFI).

MSEk|Xk−1 = EXk,θ|Xk−1
[(θ̂ − θ)(θ̂ − θ)T |Xk−1]

(6)

MSEk|Xk−1 ≥ J−1k |Xk−1 (7)

By using Bayes theorem [6], p(Xk, θ|Xk−1) is equal
to p(Xk|Xk−1, θ)p(θ|Xk−1), then the BFI is sepa-
rated into statistical (JS) and incremental (JD) BFI.
The statistical BFI refers to the prior information of
a target while the incremental BFI is the prediction
of the BFI when the input covariance is equal to RSk .
Hence, the conditional BFIM×M matrix is rewritten
in Equation (8) [6], where i, j are row and column of
the matrix. Where M denotes the maximum number
of targets which system can detect.

Jk,i,j |Xk−1 =− EXk,θ|Xk−1
[
∂2lnp(Xk, θ|Xk−1)

∂θi∂θj
|Xk−1]

=JS + JD

JD,k,i,j |Xk−1 =− EXk,θ|Xk−1
[
∂2lnp(Xk|Xk−1, θ)

∂θi∂θj
|Xk−1]

JS,k,i,j |Xk−1 =− EXk,θ|Xk−1
[
∂2lnp(θ|Xk−1)

∂θi∂θj
|Xk−1]

(8)

In order to calculate the posterior from prior when
the target parameters are dynamically changing, using
too much prior information might lose some sensing
ability and some prior information has to be forgot-
ten. Thus, the information is degenerated by a decay
constant kd to take into account the uncertainties. De-
cay constant denotes the rate of forgetting informa-
tion. Therefore, Chapman-Kolmogorov equation [?]
(9) is modified and shown in Equation (9).

p(θ|Xk−1) =

∫
p(θ|θk−1)p(θk−1|Xk−1)

kddθk−1

(9)
The derivation of BFI is based on the Slepian-

Bangs formula [?]. We can write the multivariate
Gaussian distribution BFI into Equation (10) and (11).
The incremental BFI, Equation (10), depends on the
input covariance (RS). On the contrary, in Equation
(11), the statistical BFI is independent of the input co-
variance.

JD,k,i,j |Xk−1 = Eθ|Xk−1
[Re[tr(ḢH

i (θ)R−1N Ḣj(θ)RSk)|Xk−1]]
(10)

JS,k,i,j |Xk−1 =Σk−1
ι=1 {k

k−1−ι
d (Eθ|Xk−1

[Re[tr(ḢH(θ)iR
−1
N Ḣ(θ)jRSι)|Xk−1]]

− Eθ|Xk−1
[Re[tr((Xι −H(θ)Sι)

HḦi,j(θ)Sι|Xk−1]])}
(11)
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3.2 Approximation of the number of target
by Jeffreys Prior Weighting

To minimize MSE, we search for the input covariance
matrix (RSk ) that minimize the CRB. There are sev-
eral criteria to simplify the vector to a scalar of multi-
variate CRB matrix such as using trace operation, det
operation or eigenvalue. From [?], using trace opera-
tion is the best suited for minimizing CRB. The opti-
mization problem by using trace operation is shown in
Equation (12) [6], where W is a diagonal weight ma-
trix. The method to invert a multivariate BFI matrix
for CRB calculation is shown in [?]. The dimension
of the BFI matrix is equal to the maximum number of
parameters that the system can detect.

RS = arg min
RS
{tr{ W

Jk|Xk−1
}}

s.t. RS,i,i =
PS
NT

for i = 1, 2..., NT

RS � 0

(12)

Furthermore, due to the dynamics of the targets,
we cannot determine the number of unknown targets
in the system. If the actual number of targets is less
than the expected one, there is a probability that the
optimized waveform (Equation 12) will not be subject
to any targets. Therefore, the uncertainties are over-
come by considering the probability of existence as
the weight in the optimization.

Jeffreys prior is a generalization of a uninforma-
tive prior parametrization. We want to find a prior that
can manipulate the likelihood function and invariant
to the change of variable. The solution is the square
root of Fisher information, as shown in Equation (13)
[?]. Finally, the square root of Fisher information is
added to the weight of each target parameter. The con-
straints of the problem refer to the power limitation.

p(θ) = J(θ)
1
2 (13)

Then, the optimization problem is written in
Equation (14), and it is convex. This can be cast as
a semidefinite program [3, 15] which is solved by an
interior-point algorithm and guaranteed in polynomial
time.

RS = arg min
RS
{Σ5M

i=1

√
JS,k,i,i|Xk−1

JS,k,i,i|Xk−1 + JD,k,i,i|Xk−1
}

s.t. RS,i,i =
PS
NT

for i = 1, 2..., NT

RS � 0
(14)

3.3 Optimization by Semidefinite Program-
ming

This problem can be solved by a convex optimiza-
tion which is a special case of non linear optimization
when the objective function is a convex function over
positive definite constraint. Hence, every convex opti-
mization can be cast as semidefinite programming and
solved by an interior-point algorithm.

The optimization function in Equation (14) has to
be manipulated into semidefinite programming form.
An auxiliary variable (ξ) is introduced to change ob-
jective function to be linear function, thus the op-
timization problem (14) can be written in Equation
(15).

RS = arg min
ξi,RS
{Σ5M

i=1ξi

√
JS,k,i,i|Xk−1}

s.t. RS,i,i =
PS
NT

for i = 1, 2..., NT

RS � 0

ξ ≥ 1

JS,k,i,i|Xk−1 + JD,k,i,i|Xk−1
for i = 1, 2..., 5M

(15)

Finally, the optimization problem in semidefinite
programming form is written in Equation (16) [3].
This equation is the input to the interior-point algo-
rithm.

RS = arg min
ξi,RS
{Σ5M

i=1ξi

√
JS,k,i,i|Xk−1}

s.t. RS,i,i =
PS
NT

for i = 1, 2..., NT

RS � 0[
JS,k|Xk−1 + JD,k|Xk−1eye(i)

eye(i)T ξi

]
� 0 for i = 1, 2..., 5M

(16)

where eye(i) is ith column of identity matrix.

4 State-Space Estimation

A Bayesian approach to calculate probability distribu-
tions is described to estimate the state of a target. A
non-parametric distribution is represented by a group
of particles. Furthermore, tangent speed (proportional
movement to the radar) cannot be extracted by using
only a single received signal.
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4.1 State-Space

In the presence of moving targets, there is a process
of changing the state with time (speed). This can be
described by state-space equation (Equation (17) or
(18)), where the state transition (fk) and measurement
function (hk) are possibly a non-linear function with
noise (nk). In addition, we recursively estimate θ from
measurement to track the target parameters.

θk = fk(θk−1)

Xk = hk(θk, nk)
(17)


ϕaz,k
ϕpo,k

˙ϕaz,k
˙ϕpo,k

 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



ϕaz,k−1
ϕpo,k−1

˙ϕaz,k−1
˙ϕpo,k−1


Xk = Hk(θk)Sk + nk

(18)

The first step of the recursive predicting is the predic-
tion. In Equation (9), Chapman-Kolmogorov equation
[?] predicts the probability of the parameters given
prior knowledge. The second step uses Bayes theorem
to calculate the probability of the parameters from cur-
rent knowledge, where the denumerator is the normal-
ization, as shown in Equation (19) [11]. The Likeli-
hood function in Equation (19) can be written by mul-
tivariate Gaussian distribution in Equation (20).

p(θk|Xk) =
p(Xk|θk)p(θk|Xk−1)∫
p(Xk|θk)p(θk|Xk−1)dθk

(19)

p(Xk|θk) =
1√

(2π)NR |RN |
e−

1
2
(Xk−HkSk)HR−1

N (Xk−HkSk)

(20)

4.2 Particle Filter

Since the measurement function is non-linear function
and the posterior pdf is non-Gaussian distribution, a
sampling method called particle filter is used to calcu-
late a posterior pdf. The particle filter approximates
the posterior pdf by using particles, in Equation (21).
Let {θi, wi}Nsi=1 be a sampling data, where θi is the
sampling point, wi is the weight, and Ns is the num-
ber of samples. The weight of the particles with the
decay rate (kd) is updated by Equation (22).

p(θk|Xk) ≈ ΣNs
i=1w

i
kδ(θk − θik) (21)

wik = (wik−1)
kdp(Xk|θik)p(θik|θik−1) (22)

4.3 Parameter Permutation Problem

The parameter θ is infinitely exchangeable (De
Finetti’s theorem [?]). Therefore, the weights in the
optimization (14) is not independent. In order to max-
imize searching ability the weights have to be inde-
pendent. Thus, the intersection area between param-
eter’s pdf has to be eliminated. This problem occurs
when the information of the particles is exchanging
with other targets.

Theorem 1 Let θ1, θ2, ..., θm be an infinite sequence
of random variable, then θ is exchangeable of all
value of m if:

θ1, θ2, ..., θm = θs(1), θs(2), ..., θs(m) for all s ∈ S(m)

where S(m) is a permutation function of
{1, 2, ...,m}.

To eliminate this problem, we permute the pa-
rameters back. The algorithm minimizes the distance
of the parameters between a particle and the highest
probability particle, according to the parameter’s in-
formation. Algorithm 1 shows the rearranging func-
tion.

Algorithm 1 Rearranging Algorithm

({θik, w
j
k}
Ns
i=1) = Rearrange({θik−1, wik−1}

Ns
i=1, Js,k−1)

order = DescendingDiagonalSorting(Js,k−1)
for i = 1 : Ns

for j = 1 : m

θi[j] = θi[min(θi[order[j]]− θmax(w))];
end for
end for

4.4 Resampling

One of the major problems of a particle filter is when
the algorithm runs for a while, all but one particle will
have a zero weight [11]. The estimated effective sam-
ple denotes the efficiency of the algorithm, written in
Equation (23) [11]. The estimated effective sample is
high when the sum of the square weight is high.

Neff =
1

ΣNs
i=1(w

i
k)

2
(23)

To reduce the effect of degeneracy, the estimated ef-
fective sample has to be maximized by using the re-
sampling algorithm (Algorithm 2). After resampling,
all particles will share equal weight.
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Algorithm 2 Resampling Algorithm [11]

({θj∗k , w
j
k, i

j}Nsj=1) = Resample({θik, wik}
Ns
i=1)

initialization CDF: c1 = 0;
for i = 2 : Ns

ci = ci−1 + wik;
end for
set: i = 1;
initialization point:u1 ∼ U [0, N−1s ];
for j = 1 : Ns

uj = u1 +N−1s (j − 1);
while uj > ci

i = i+ 1;
end while
Assign sample: θj∗k = θik;
Assign weight: wjk = N−1s ;
Assign parent: ij = i;

end for

4.5 Algorithm Summary

The particle filter is shown in Algorithm 3. Thus, the
overall cognitive system is concluded in Algorithm 4.
First, it transmits an orthogonal waveform with uni-
form power for any direction and receives the signal
back. Second, it calculates BFI and finds the optimum
input covariance by using semidefinite programming.
Third, it transmits and receives a signal from the tar-
gets. Finally, it uses the rearranging function and par-
ticle filter to estimate the parameters of the targets.

Algorithm 3 Likelihood Particle Filter Algorithm

({θik, w
j
k}
Ns
i=1) = Filter({θik−1, wik−1}

Ns
i=1, Xk)

for i = 1 : Ns

calculate: wik = (wik−1)
kd ;

end for
normalize wk;
if Neff is less than some threshold (1 to∞)

({θik, wik, ij}
Ns
i=1) = Resample({θik, wik}

Ns
i=1) ;

end if
for j = 1 : Ns

draw θjk ∼ p(θk|θ
ij

k−1);
calculate: wik = wikp(Xk|θik)p(θik|θik−1);

end for
normalize wk;

Algorithm 4 The adaptive waveform design method.
draw θ0 ∼ U [−π

3 ,
π
3 ];

w0 = N−1s ;
set k = 1;
set J = 0;
while user constraints are not satisfied

k = k + 1;
transmit a waveform;
collect Xk from system;
({θik, w

j
k}
Ns
i=1) = Rearrange({θik−1, wik−1}

Ns
i=1, Js,k−1)

({θik, w
j
k}
Ns
i=1) = Filter({θik−1, wik−1}

Ns
i=1, Xk)

calculate J from Equation (8);
find optimum RS from Equation (14);

end while

5 Simulation Results

Consider the MIMO radar system where the anten-
nas are designed for the best parameter identifiabil-
ity. By half-wavelength spacing, the transmit antennas
and receive antennas are located at [r1, r2, r3, r4] =
2π
ω [−8,−4, 0, 4] and [r1, r2, r3, r4] = 2π

ω [0, 1, 2, 3],
respectively. To provide the orthogonality to the
waveform, we set code length (L) to 8. The algorithm
is simulated in the -3 dB SNR environment, where
the noise is an i.i.d. Gaussian random variables. In
particle filter, the number of particles (Ns) is set to
100,000.

For simplicity, while the robustness of the sys-
tem is observable, some computation can be reduced.
Therefore some parameters are assumed to be known.
As the parameters namely complex attenuation (α),
azimuth angle (ϕaz), and azimuth speed ( ˙ϕaz) are
considered, we assume that polar angle (ϕpo), prop-
agation delay (τ ), and Doppler shift (D) are assumed
to be known.

5.1 Changing of number of targets

This section we concern the uncertainties due to the
dynamic of targets in term of the change of number of
targets. The result of Jeffreys prior reveals the prob-
ability that each M targets are existed. In this case,
the maximum number of possible targets (M ) is to 4.
In Figure 2, the black lines denote the posterior pdf of
each target (4 lines in each pulse step), while the green
lines denote the corresponding waveform from first to
sixth pulse step. The real targets are existed with the
stationary speed as indicated by dot lines. The tar-
get locates at -50 degree for every pulse step. At the
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fourth to sixth step, the target is appearing at -10 de-
gree. At the fifth step, a target at -45 degree is ap-
pearing, also. From the graph, the number of targets
is increasing from 1 to 3, thus the posterior pdf rise
at the area of targets. While the pulse step is increas-
ing the posterior pdf obviously distinct for each target.
Nonetheless, during fifth to sixth step, only 3 existing
targets from maximum of 4, there is a smooth line that
dose not depends on any target.

For example, the performance of angle estimation
versus SNR at fifth pulse step is shown in Figure 3.
Without forgetting some prior information (kd = 1),
non-adaptive waveform (orthogonal waveform) per-
forms better results for every SNR, because the sys-
tem with kd = 1 knows that no new target appear and
dose not put an energy to sense it while the orthogo-
nal equally searches through every space. However,
when some prior is forgotten, the speed for sensing
the new target of the system with kd = 0.7 is faster
than kd = 1.

Figure 3: Relation between MSE of angle estimation
and SNR at fifth pulse step.

5.2 Behavior of the adaptive waveform

In this part, we examine the beam pattern of the de-
signed waveform when 2 targets are closely located at
ϕaz = −1◦, 1◦ with a speed of 0 ( ˙ϕaz = 0◦/step) and
the complex attenuation of both targets is 0.33+0.33i.

Figure 5 shows the posterior pdf and the wave-
form with Jeffreys weight at the first to tenth pulse
steps when kd = 0.7. Thus, the MSE and CRB are
plotted in Figure 4. With the increasing pulse step,
the mean square error of every parameter declines to
some limited values. Most of the power focus on the
target area. Nevertheless, at the fifth and eighth step
the CRB of the angle parameter is significantly higher

than the CRB of the attenuation parameter. Therefore,
at this step, the waveform is designed to achieve the
best angle parameter, as we can see the sharp edges of
beam pattern in Figure 5.

As the result from sharp edges beam pattern, we
get higher angle information, though we get lower at-
tenuation information. This process is automatically
done by the system. Therefore, if the attenuation in-
formation and power focusing at the target area are
needed, though if want angle information, the sharp
edges beam pattern is created. The optimization adapt
the waveform in order to get much more information
for both angles and attenuation equally.

5.3 Multiple Moving Targets Case

This part shows performance and robustness of the
system when two moving targets are considered.
Moreover, the importance of using Jeffreys prior as
weight in optimization is shown in this part.

The immediately change of targets location might
disrupt the system stability, therefore the level of de-
cay constant kd effects sensibility and stability of the
system. Between the first to the fifth pulse step, there
are two targets. First target is located at ϕaz = 50◦

with speed ˙ϕaz = 0◦/step, and the other is located
at ϕaz = −2◦ with speed ˙ϕaz = −2◦/step. At the
sixth pulse step, targets are relocated, the first target
is located at ϕaz = −25◦ with speed ˙ϕaz = 0◦/step,
the second is located at ϕaz = 2◦ with speed ˙ϕaz =
2◦/step.

Because the estimation of speed perpendicular to
the radar (not related to Doppler shift) is directly ob-
tained from particle filter, the calculation of CRB of
speed estimation has no effect on waveform design.

In this example of the posterior pdf and corre-
sponding waveform with Jeffreys weight, information
decay rate is set to (kd = 0.7). The average per-
formance obtained by 100 Monte Carlo simulations
shown in Figure 6. We compare the system to the sys-
tem without prior modification (kd = 0.1) and non
adaptive waveform (orthogonal waveform). From the
graph (Figure 6), angle of arrive during first to fourth
pulse step, MSE when kd = 1 decreases with the
fastest rate follow by kd = 0.7 system and non adap-
tive system. At the fifth step, the MSE when kd = 0.7
suddenly drops to the same value of kd = 1 system,
while kd = 1 and non adaptive system remain con-
stant. At the sixth step, MSE of all systems rise to
the same level as the first pulse step. Then, after sixth
pulse step, MSE of kd = 0.7 system decreases with
huge slope, while kd = 1 and non adaptive system is
insignificant decreasing.

The orthogonal waveform shows the average re-
sult for both before and after relocating. Before relo-
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Figure 2: Posterior pdf and corresponding beam pattern when the targets are appearing at first, fourth, and fifth
pulse step.

Figure 4: MSE and CRB of angle, speed, and attenuation versus pulse step, where two targets are located at -1,1
deg.

Figure 5: The posterior pdf and the corresponding beam pattern of each pulse step, where two targets are located
at -1,1 deg.

cating, the waveform with kd = 1 gives the best per-
formance However, after relocating it gives very poor
performance. However, the waveform with kd = 0.7
achieves a good performance for both before and after
relocating.

With the same parameters setup, we show the ef-
fect of parameter kd to MSE. A hundred Monte Carlo
creates the simulation results in Figure 7. The graphs
show the result from the fifth pulse step and sev-
enth pulse step. The result from the fifth step shows
the performance of the system when the target is not
changing or moving with a constant speed, while the

result from the seventh step indicates the capability of
the system to manipulate the uncertainties.

In Figure 8, we show the difference between using
Jeffreys prior as a weight and not using. We use 100
Monte Carlo simulations to achieve the results. Giv-
ing higher attention to the target that has higher exis-
tence probability gains stability for the system. From
the graph, for every parameters, during first to sixth
pulse step, the MSE of the system with and without
Jeffreys prior as a weight are reducing with a similar
rate. Nevertheless, MSE of the system with Jeffreys
prior after sixth pulse step declines significantly faster
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Figure 6: MSE of angle of arrives versus pulse step
of three different systems, where the two targets are
moving with a speed. The targets are relocated at the
6th pulse step.

Figure 7: The effect of kd on the MSE of angle of
arrive.

Figure 8: The comparison between equal and Jeffreys
prior weight of the waveform optimization. The MSE
of angle of arrive.

than the system without Jeffreys prior. Therefore, us-
ing Jeffreys prior as a weight in the optimization per-
forms better than not using on every count.

6 Conclusion

The dynamic targets tracking for a cognitive radar sys-
tem is revisited with the present of the uncertainties
due to the dynamics of targets. This study adds the
robustness to the system by decaying the prior before
the calculation of the posterior in the waveform op-
timization which controlled by a constant, using Jef-
freys prior as the weight for multiple targets optimiza-
tion, and estimating posterior pdf by particle filter al-
gorithm.

As the result form the simulations, we know the
probability that the targets are existing, the possibil-
ity of every possible angle of arrive, and the speed of
a moving target. Therefore, the proposed techniques
gained the ability to cope with the uncertainties due to
the dynamics of the targets.
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